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Abstract We present an N = 2-supersymmetric mechanical system whose bosonic sector,
with two degrees of freedom, exhibits the most general possible supersymmetric fourth or-
der potential, including the interesting case of SU(2) Yang–Mills theory. The Painlevé test
is adopted to discuss integrability and we focus on the rôle of supersymmetry and parity
invariance in two space dimensions for the attainment of integrable or non-integrable mod-
els, with some remarks on the chaotic behavior. Our result shows that, for the model studied
here, the relationships among the parameters, as imposed by supersymmetry, restrict the pa-
rameter space in such a way that the reduction on its non-integrable sector is much more
severe than on its integrable sector (especially on the non-separable subset of the latter),
thus suggesting that supersymmetry may favor (mainly non-separable) integrability.

Keywords Supersymmetric mechanics · Supersymmetry · Integrability · Chaos

1 Introduction

The study of integrability in classical and quantum field theories has been developed for
quite a time, actually since the beginning of the eighties, with relevant results that con-
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tributed a great deal for the understanding of these theories and, moreover, allowed the im-
provement of non-perturbative techniques [1–5]. On the other hand, a number of streams of
investigation on chaos has been pushed forward, mainly considering spatially homogeneous
field solutions and by performing calculations in the framework of lattice field theory [6–
17]. These studies revealed the existence of chaotic solutions in a considerably vast class of
gauge theories and, more recently, also in the context of superstrings and supermembrane
theories [18–21].

Our work has been motivated by a question stated some years ago [8], which, for the time
being, has not been fully answered; namely, whether or not supersymmetry (SUSY) would
have a stabilizing rôle for those field theories that, in their non-supersymmetric version,
show a chaotic behavior.

In the work of Ref. [22], the authors argue, based on considerations in the framework
of Supersymmetric Quantum Mechanics, that an ordered dynamics implies a broken super-
symmetry, while exact supersymmetry implies an ergodic dynamics.

Ordered dynamics Ergodic dynamics
⇓ ⇑

Broken SUSY Exact SUSY.

It is worthy reminding that an ergodic dynamics is somewhat associated to chaotic dy-
namics.

Another relevant result in the literature, that establishes a link between chaos and super-
symmetry, is found in a work by Horne and Moore [23], where it is stated that the modular
space corresponding to the superstring vacuum exhibits chaos. These results enable us to
suggest, in the present paper, the hypothesis that a supersymmetric scenario is more viable
for the appearance of chaos than a non-supersymmetric framework.

Up to now, a detailed analysis relating supersymmetry and chaos, in much the same
way as chaos is studied in field theories, is lacking in the literature. Close to this issue,
we should mention a number of attempts to discuss stability and chaos in the framework
of brane theories, by concentrating on their bosonic sector [20, 21]. Nevertheless, even in
this context, one could put more emphasis on the specific rôle of supersymmetry in the
determination of stability and chaos.

A similar situation is observed in connection with the investigation of integrable super-
symmetric theories, where the integrable or non-integrable character is ascertained, without
however highlighting the mechanisms or those specific properties of supersymmetry which
work in favour, or against, integrability [24–32].

Our work sets out to tackle this issue, that we believe should be more manifestly worked
out. To pursue an investigation focusing on the rôle of supersymmetry in connection with
integrability and chaos, we propose to start off from a supersymmetric mechanical sys-
tem, rather than a field-theoretic model. The system we choose to work with is built up as
the N = 2-extended supersymmetric version of a dimensionally reduced SU(2) Yang–Mills
(YM) theory that arises when spatially homogeneous fields are considered and a particu-
lar ansatz on the gauge potentials is adopted in the dimensional reduction scheme so that
only two degrees of freedom survive [33] in the mechanical limit. We also devote special
attention to the rôle of parity symmetry, since we assume the latter is an invariance of the
interactions involved in the systems we shall be considering. Our analysis of integrability
shall therefore rely on our considerations on supersymmetry and parity invariance. They
dictate special conditions in the space of parameters so that, instead of having to take by
decree special choices of these parameters, as it is usually done, we invoke these two invari-
ances to naturally restrict and select possibilities in parameter space. As a matter of fact, we
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anticipate that parity may appear in two versions for planar systems, and this point shall be
suitably taken care of here.

Our paper is organized as follows. In Sect. 2, we propose a general 2-dimensional purely
bosonic model with parity symmetry and we identify the cases of integrability. Next, the
N = 2-supersymmetric extension of the model is written down in Sect. 3. The complete
bosonic sector, now enlarged by the presence of two supersymmetries, is discussed in full
details in Sect. 4, where we pay due attention to the rôle of parity and we pick out Painlevé
test as a criterium to infer about integrability. In Sect. 5, we reassess the question of the in-
tegrability for the bosonic sector of our N = 2-model, but now taking into account the con-
straints dictated by parity whenever it is imposed also to the fermionic interactions. A very
restrictive class of potentials comes out that fulfills integrability. In Sect. 6, we perform a
brief chaos analysis and, finally, in Sect. 7, we present our Final Discussions and we draw
our General Conclusions.

2 The Ordinary Bosonic Model with Considerations on Parity Symmetry

We assume the most general fourth-order polynomial potential for two degrees of freedom
described by the variables x and y:

V = C1x
4 + C2y

4 + C3x
3y + C4xy3 + C5x

2y2 + C6x
3

+ C7y
3 + C8x

2y + C9xy2 + C10x
2 + C11y

2, (1)

where the term in xy was not considered, since it may be canceled out by means of a proper
linear transformation (a rotation in the x–y plane).

It may be considered as a sort of protopotential used to build up a general non-
supersymmetric polynomial potential up to fourth order. We are bound to fourth order be-
cause we have in mind mechanical models derived from Yang–Mills field theories and these,
as we know, display self-interaction vertices for three and four potentials (or coordinates, in
the mechanical version). Since we are interested in realistic models, we impose parity sym-
metry which is respected by mechanical, electromagnetic and strong-force models. We shall
not be dealing with models coming from chiral gauge theories.

To implement parity in the model, we have to consider that there are two possibilities,
since we are in a two-dimensional space:

x-parity:
{x → −x

y → y,
(2)

or

y-parity:
{x → x

y → −y.
(3)

In the first case, the resulting potential is

V = C1x
4 + C2y

4 + C5x
2y2 + C7y

3 + C8x
2y + C10x

2 + C11y
2. (4)

This potential looks like the sum of two well-known potentials:

• A quartic potential (Yang–Mills-type)

VYM = Ax2 + By2 + ax4 + by4 + dx2y2, (5)
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Table 1 Some known integrable cases of YM-type potentials

Notation of (5) Notation of (1)

(a) A = B, a = b, d = 6a C10 = C11, C1 = C2, C5 = 6C1

(b) A, B, a = b, d = 2a C10, C11, C1 = C2, C5 = 2C1

(c) A = 4B, a = 16b, d = 12a C10 = 4C11, C1 = 16C2, C5 = 12C1

(d) A = 4B, a = 8b, d = 6b C10 = C11, C1 = C2, C5 = 6C1

(e) d = 0 (trivial) C5 = 0

Table 2 Some known integrable cases for the Henon–Heiles potential

Notation of (6) Notation of (1)

(a) M = N, m = −n C10 = C11, C7 = 1
3 C8

(b) M, N, 6m = −n C10, C11, C7 = 2C8

(c) M = 16N, 16m = −n C10 = 16C11, C7 = 16
3 C8

(d) m = 0 (trivial) C8 = 0

which is known to be integrable in the cases [34] shown in Table 1. When A, B and d

are the only non-vanishing parameters, this potential is called “Yang–Mills-Higgs”, while
the case in which only the parameter d is non-vanishing is usually called “pure Yang–
Mills” [33].

• The Henon–Heiles (HH) potential

VHH = 1

2
(Mx2 + Ny2) + mx2y − n

3
y3, (6)

that exhibits well-known integrable cases [34] shown in Table 2.
For the case of y-parity, similar conclusions may be drawn, with appropriate exchanges

of coordinate and constant labels.

3 The supersymmetric model

Now, we shall consider an N = 2-supersymmetric mechanical model [35], defined as fol-
lows. The two Grassmannian parameters of the superspace will be denoted by θ and θ̄ . The
two real Cartesian coordinates of a planar particle, x and y, are the bosonic components of
the superfield coordinates, which are given by

X(t, θ, θ̄) = x(t) + Θ†γ1Λ(t) + Λ†(t)γ1Θ − 1

2
Θ†γ3Θf1(t) (7)

and

Y (t, θ, θ̄ ) = y(t) + Θ†γ2Ξ(t) + Ξ †(t)γ2Θ − 1

2
Θ†γ3Θf2(t), (8)

with:

Θ ≡
(

θ

θ̄

)
, Λ ≡

(
λ1

λ2

)
, Ξ ≡

(
ξ1

ξ2

)
, (9)



Int J Theor Phys (2007) 46: 2983–3004 2987

where all the λ’s and ξ ’s are Grassmannian variables. The γj ’s are the Dirac matrices cor-
responding to the two-dimensional Euclidean space under consideration and they may be
chosen so as to coincide with the Pauli matrices: γi ≡ σi and γ3 ≡ −iγ1γ2 = σ3. Θ is a
Majorana spinor, which, in this particular representation of the γ -matrices, takes the form
given in (9), where the “bar” stands for complex conjugation. On the other hand, Λ and Ξ

are Dirac fermions. Therefore, (7–8) yield:

X = x + θψ1 − θ̄ ψ̄1 + θ θ̄f1 (10)

and

Y = y + θψ2 − θ̄ ψ̄2 + θ θ̄f2, (11)

where it is noteworthy to remark that it is precisely the combination ψ1 ≡ (λ1 − λ̄2), along
with its complex conjugate ψ̄1 ≡ (λ̄1 − λ2), that carry the fermionic degrees of freedom
of X. Similarly, the spinorial degrees of freedom of Y are all contained in ψ2 ≡ i(ξ1 − ξ̄2)

and its complex conjugate, ψ̄2 ≡ −i(ξ̄1 − ξ2).
The supersymmetry covariant derivatives are given by

D ≡ ∂θ̄ − iθ∂t , (12)

D̄ ≡ ∂θ − iθ̄∂t (13)

and satisfy:

D2 = 0, (14)

D̄2 = 0, (15)

{D,D̄} = −2i∂t . (16)

The super-action to be considered contains, besides the kinetic terms, the most general
superpotential, up to third order in the superfield coordinates (this implies a fourth-order
potential in terms of the physical coordinates),

S =
∫

dtdθdθ̄

{
M

2
[DXD̄X + DYD̄Y ] + U(X,Y )

}
, (17)

where the first term gives rise to the kinetic terms and the superpotential U(X,Y ) is assumed
to be given by:

U(X,Y ) = k1X
2Y + k2XY 2 + k3X

2 + k4Y
2 + k′

1X
3 + k′

2Y
3, (18)

the k’s being arbitrary real constants. The term in XY was not considered for the same
reason stated after (1), now referring to a rotation in the plane of the superfield coordi-
nates, X and Y . With regard to the terms linear in X and in Y , they were not included,
since, similarly to what happens with the terms linear in x and in y in usual mechan-
ics, their coefficients are the Euler–Lagrange equations. The equations of motion may be
used to eliminate the non-dynamical degrees of freedom, fj , and, thus, the super-action,
S = ∫

dtL, yields the following Lagrangian, which is therefore the most general N = 2-
supersymmetric Lagrangian with a fourth-order potential (summation over repeated indices
assumed):
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L = M �̇x2

2
+ i

M

2
(ψ̄j ψ̇j + ψj

˙̄ψj) − k2
1 + 9k′

1
2

2M
x4 − k2

2 + 9k′
2

2

2M
y4 − 6k1k

′
1 + 2k1k2

M
x3y

− 6k2k
′
2 + 2k1k2

M
xy3 − 2k2

1 + 2k2
2 + 3k′

1k2 + 3k1k
′
2

M
x2y2 − 6k3k

′
1

M
x3 − 6k4k

′
2

M
y3

− 4k1k3 + 2k1k4

M
x2y − 4k2k4 + 2k2k3

M
xy2 − 2k2

3

M
x2 − 2k2

4

M
y2

− 2[k1(ψ1ψ̄2 − ψ̄1ψ2) + k2ψ2ψ̄2 + 3k′
1ψ1ψ̄1]x

− 2[k2(ψ1ψ̄2 − ψ̄1ψ2) + k1ψ1ψ̄1 + 3k′
2ψ2ψ̄2]y

− 2k3ψ1ψ̄1 − 2k4ψ2ψ̄2. (19)

All the SUSY technicalities are over and, in the next sections, the integrability conditions
for the Lagrangian above will be discussed, and the influence of supersymmetry and parity
invariance shall be highlighted.

4 The Bosonic Sector and its Integrability

The application of the Painlevé test (for a short review, see Appendix) directly to the bosonic
sector is not actually a good procedure, for the resolution of the systems that appear in the
analysis becomes very complex.

In this section, we shall take into consideration the observation that the original model
is not invariant under the two classes of parity transformations. This may set a more formal
framework.

So, in a first attempt, we will impose parity symmetry only to the bosonic sector of the
theory and, after that, we shall check how the constraints imposed by this invariance affect
the integrability of the model.

Adopting invariance under x-parity, we have the following constraints on the bosonic
part of the potential that appears in (19):

6k1k
′
1 + 2k1k2

M
= 0, (20)

6k2k
′
2 + 2k1k2

M
= 0, (21)

6k3k
′
1

M
= 0, (22)

4k2k4 + 2k2k3

M
= 0. (23)

4.1 Parameters surviving the parity constraints

Solving the system of conditions for k1, k2, k
′
1, k

′
2, k3 and k4, we obtain as solutions the

following possibilities (the parameters shown between commas in each case below may
assume any value, while those not appearing are all vanishing):

1st case: {k′
1, k

′
2, k4}; (24)

2nd case: {k1, k
′
2, k4, k3}; (25)
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3rd case: {k′
1, k2}; (26)

4th case: {k′
1, k1, k2 = −3k′

1, k
′
2 = −k1/3}; (27)

5th case: {k2, k3, k4 = −k3/2}. (28)

To study the consequences of these solutions we shall present in the next subsection the
Painlevé test (see Appendix), which has been very used in the search for integrable systems,
for being an algorithm.

4.2 Applying the Painlevé test

1st case

For the first case, {k′
1, k

′
2, k4}, we have the following potential:

Pot1 = 9k′
1

2

2M
x4 + 9k′

2
2

2M
y4 + 6k4k

′
2

M
y3 + 2k2

4

M
y2, (29)

which represents two uncoupled degrees of freedom and thus is integrable. Indeed, applying
the Painlevé test, we obtain four branches referring to these uncoupled systems and which
survive the test.

2nd case

For the second case, {k1, k
′
2, k4, k3}, we have the following potential:

Pot2 = k2
1

2M
x4 + 9k′

2
2

2M
y4 + 2k2

1 + 3k1k
′
2

M
x2y2 + 6k4k

′
2

M
y3

+ 4k1k3 + 2k1k4

M
x2y + 2k2

3

M
x2 + 2k2

4

M
y2, (30)

with dominant potencies:

α1 = −1, α2 = −1 (31)

and four branches with the following expressions for the resonances:

−1, 4,
2k1 − 3k′

2

k1
,

3k′
2 + k1

k1
, (32)

that will show integer resonances if we set k′
2 = n

3 k1, where n = {−1,0,1,2}.
For the case n = −1, it is not possible to determine the resonances.
For the case n = 0, we have the following potential:

Pot3 = k2
1

2M
x4 + 2k2

1

M
x2y2 + 4k1k3 + 2k1k4

M
x2y + 2k2

3

M
x2 + 2k2

4

M
y2. (33)

It does not pass the Painlevé test in the sense that there appears a compatibility condition
that cannot be fulfilled:

−4i
√

2(18k2
1x

2
1 − 5k2

4 − 4k3k4) = 0, (34)
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except for the following trivial cases: if k1, k3 and k4 = 0, which cancels out the potential;
and if k1 = 0 and k4 = − 4

5k3, which leads to the harmonic potential

Pot4 = 2k2
3

M
x2 + 32k2

3

25M
y2 (35)

and therefore constitutes a trivial integrable case.
For the case n = 1, we have the following potential:

Pot5 = k2
1

2M
x4 + k2

1

2M
y4 + 3k2

1

M
x2y2 + 2k4k1

M
y3

+ 4k1k3 + 2k4k1

M
x2y + 2k2

3

M
x2 + 2k2

4

M
y2 (36)

and, now, we obtain four branches with the following resonances:

−1, 1, 2, 4, (37)

but with the following compatibility condition:

−2(−k4 + k3)M = 0, (38)

to be verified in the resonance j = 1 of the first and of the second branches. Setting k3 = k4,
the potential is now written as below:

Pot6 = k2
1

2M
x4 + k2

1

2M
y4 + 3k2

1

M
x2y2 + 2k3k1

M
y3

+ 6k3k1

M
x2y + 2k2

3

M
x2 + 2k2

3

M
y2, (39)

which is the sum of the two integrable cases shown in Table 1, item (a), and Table 2, item (a).
Thus, the system is expected to be integrable. Indeed, it passes the Painlevé test, with domi-
nant potencies:

α1 = −1, α2 = −1. (40)

The values of the resonances for the two branches are:

−1, 1, 2, 4, (41)

and for the first branch the coefficients of the dominant terms are:

x0 = iM

2k1
, y0 = iM

2k1
. (42)

For the second branch, the coefficients read as follows:

x0 = − iM

2k1
, y0 = − iM

2k1
. (43)

In the first branch, the arbitrary coefficients are:

y1, y2 and y4, (44)
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and the arbitrary coefficients of the second branch are:

y1, y2 and x4. (45)

Reminding that the variable t0 is the fourth arbitrary quantity corresponding to the resonance
−1, thus, this (fourth order) system possesses four arbitrary coefficients and, therefore, it is
integrable.

For the case n = 2, we have the following potential:

Pot7 = k2
1

2M
x4 + 2k2

1

M
y4 + 4k2

1

M
x2y2 + 4k4k1

M
y3

+ 4k1k3 + 2k4k1

M
x2y + 2k2

3

M
x2 + 2k2

4

M
y2. (46)

It was not possible to determine the dominant terms.

3rd case

For the third case, {k′
1, k2}, we have the following potential:

Pot8 = 9k′
1

2

2M
x4 + k2

2

2M
y4 + 2k2

2 + 3k′
1k2

M
x2y2. (47)

The expressions for the resonances in this case are:

−1, 4,
3k′

1 + k2

k2
,

2k2 − 3k′
1

k2
, (48)

that will show integer resonances if we set k′
1 = n

3 k2, where n = {−1,0,1,2}.
For the case n = −1, the potential is

Pot9 = k2
2

2M
x4 + k2

2

2M
y4 + k2

2

M
x2y2, (49)

and the system passes the Painlevé test, as expected, since this is a known integrable case
already shown in item (b) of Table 1.

For the case n = 0, the system does not pass the test with the following potential:

Pot10 = k2
2

2M
y4 + 2k2

2

M
x2y2, (50)

because there appears the following compatibility condition:

18ik2
2y

2
1 = 0, (51)

which is satisfied only if k2 is equal to zero, but in this case the potential vanishes.
For the case n = 1, the potential is

Pot11 = k2
2

2M
x4 + k2

2

2M
y4 + 3k2

2

M
x2y2, (52)

and the system passes the Painlevé test, as expected, since this is a known integrable case
already shown in item (a) of Table 1.
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For the case n = 2, the system does not pass the test with the following potential:

Pot12 = 2k2
2

M
x4 + k2

2

2M
y4 + 4k2

2

M
x2y2, (53)

because it was not possible to determine the dominant terms.

4th case

For the fourth case, {k′
1, k1, k2 = −3k′

1, k
′
2 = −k1/3}, we have the following potential (quar-

tic):

Pot13 = 5k2
1

M
x4 + 5k2

1

M
y4 + 10k2

1

M
x2y2, (54)

which is the same as (49), already shown to be integrable.

5th case

For the fifth case, {k2, k3, k4 = −k3/2}, we have the following potential:

Pot14 = k2
2

2M
y4 + 2k2

2

M
x2y2 + 2k2

3

M
x2 + k2

3

2M
y2. (55)

This potential does not pass in the Painlevé test because the following compatibility
condition appears:

−3ik2
3 + 18ik2

2y
2
1 = 0, (56)

which is satisfied only if k2 = k3 = 0, and this eliminates our potential.

Summary

In Table 3, we summarize our results of this section, in which some integrable potentials
were found by means of the application of the Painlevé test to that cases of the bosonic sector
of the Lagrangian (19) which preserve x-parity (similar results may immediately be obtained
for the y-parity, by proper exchanges in the coordinates and coefficients labels). In the next
section, the x-parity will be imposed also for the fermionic sector and we will conclude that
potentials Pot9 and Pot11 are the only ones also compatible with this requirement (as well as
with regard to the y-parity).

5 The Integrability of the Bosonic Sector with Parity Considerations for
the Complete Model

As verified in the previous section, by imposing parity to the bosonic sector, the task of
finding integrable cases became less arbitrary, in that the choice of the coefficients in the
terms of the potential was guided by the argument of parity invariance. In spite of that, it
was still necessary to fix by hand the values of some parameters when applying Painlevé test
to recover the integrable cases we have listed previously.

In this section, we shall impose the parity symmetry not only to the bosonic sector but
also to the fermionic interactions, and we shall verify to which extent the resulting con-
straints on the parameters are compatible with integrability.
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Table 3 Integrable cases found with the Painlevé test for the cases of the bosonic part of the Lagrangian (19)
which are x-parity preserving

Case Potential Comments

1st Pot1, (29) Two uncoupled degrees of freedom

2nd Pot4, (35) A harmonic potential, trivially integrable

Pot6, (39) YM- plus HH-type; Table 1(a) + Table 2(a)

3rd Pot9, (49) YM-type, Table 1(b); also compatible with fermionic x- and y-parity
symmetry (see next section)

Pot11, (52) YM-type, Table 1(a); also compatible with fermionic x- and y-parity
symmetry (see next section)

4th Pot13 = Pot9 –

5th None was found –

5.1 Two-Component Formulation of the Fermionic Sector

Since the model is classic and non-relativistic, and defined in a two-dimensional Euclidean
space, E2, the covariance group is SO(2). We adopt the representation below for the Clifford
algebra:

γ1 = σx, (57)

γ2 = σy, (58)

γ3 = −iγ1γ2 = σz, (59)

such that:

{γi, γj } = 2δij , j = 1,2, (60)

{γi, γ3} = 0. (61)

For a general spinor,

Ψ =
(

Ψ1

Ψ2

)
, (62)

the action of SO(2) is given by

Ψ ′ = e− i
2 ωσzΨ, (63)

where ω is the rotation angle; therefore Ψ †Ψ is invariant.
Now, we try to identify x- and y-parities in the spinorial space. To do that, we start off

from the Dirac equation:

iγ1∂xΨ + iγ2∂yΨ = 0, (64)

to which we impose x-parity symmetry:

Ψ (t; �x)
P−→ Ψ ′(t ′; �x ′) = RΨ (t; �x) = RΨ (t ′;−x ′, y ′), (65)
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where R represents the parity matrix in the spinor space:

γ1R = −Rγ1, (66)

γ2R = Rγ2. (67)

Then, our parity matrix may be chosen as

R = γ2 (68)

and, thus,

Ψ ′(t ′; �x ′) = γ2Ψ (t; �x). (69)

So, all spinors, up to a phase factor, transform under parity by means of the γ2-matrix.
Considering the other possibility, that is, the y-parity,

P
{x → x,

y → −y,
(70)

one can readily check that this parity is represented by the γ1-matrix:

Ψ → γ1Ψ,

Ψ ′(t ′; �x ′) → γ1Ψ (t; �x).
(71)

5.2 The Integrability with the Parity Constraints from the Fermionic Sector

To include the constraints dictated by x- or y-parity symmetry for the complete (bosonic
+ fermionic) model, we propose to actually carry out the analysis directly in terms of the
superfields (7) and (8). Rather than following the lengthy procedure of considering all the
terms of the component-field action, we propose to work without quitting superspace.

The action of the x-parity on the superfields is given by

X → −X and Y → Y, (72)

provided that

Θ → γ2Θ,

Λ → γ2Λ,

Ξ → −γ2Ξ,

f1 → f1,

f2 → −f2.

With these parity assignments to the fermions and auxiliary fields, the superfield coordi-
nates transform under parity exactly as above. Moreover, by virtue of the specific choice of
γ2, we have that parity acts on dθ , dθ̄ and the covariant derivatives as below:

D → −iD̄, D̄ → iD;
dθ → idθ̄ , dθ̄ → −idθ.
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With all the prescriptions above, the volume element, dtdθdθ̄ , picks a minus sign. This
means that the kinetic terms are naturally invariant, but parity symmetry of the potential sets

k1 = k3 = k4 = k′
2 = 0, (73)

with k2 and k′
1 non-vanishing.

These parameter constraints are the same as the “3rd case” of Sect. 4.2, which was ob-
tained when only the bosonic sector was considered and for which we found only two inte-
grable cases: Potentials 9 and 11, that we rename now as below:

Potsusy1−x = k2
2

2M
x4 + k2

2

2M
y4 + k2

2

M
x2y2, (74)

and

Potsusy2−x = k2
2

2M
x4 + k2

2

2M
y4 + 3k2

2

M
x2y2. (75)

So, from all integrable cases found when we considered only the bosonic sector, only the
two potentials above preserve x-parity under consideration of the complete model.

On the other hand, if we contemplate y-parity symmetry for the whole model, we have

X → X and Y → −Y, (76)

provided that

Θ → γ1Θ,

Λ → −γ1Λ,

Ξ → γ1Ξ,

f1 → −f1,

f2 → f2.

Also, D → −iD̄, D̄ → iD, dθ → idθ̄ and dθ̄ → −idθ .
So, as in previous case, y-parity invariance is ensured only for those superfield monomi-

als that change sign under parity. This then impose:

k2 = k3 = k4 = k′
1 = 0, (77)

while k1 and k′
2 are the only coefficients compatible with y-parity invariance.

These constraints on the parameters correspond to only one set of solutions that is found
when only the bosonic sector is considered in connection with the y-parity, in a similar
way to what happens for x-parity. There are only two integrable cases that we shall present
below:

Potsusy1−y = k2
1

2M
x4 + k2

1

2M
y4 + k2

1

M
x2y2, (78)

and

Potsusy2−y = k2
1

2M
x4 + k2

1

2M
y4 + 3k2

1

M
x2y2. (79)
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So, from all integrable cases found when only the bosonic sector is considered, only the
two potentials above preserve y-parity if the whole model is analyzed. Now, one immedi-
ately notes that the potentials (78) and (79) are the same as (74) and (75) (since the label of
the parameter, k1 or k2, is not relevant), thus leading us to the conclusion that the requirement
of either x- or y-parity symmetry in the whole model implies the same two possibilities for
the potential in order to the system be integrable (under the criterium of Painlevé test).

6 Chaotic Behavior

In the previous sections, we carried out an analysis of the integrability of the bosonic sector
of supersymmetric models and we have pointed out the appearance of integrable cases for
both coupled and non-coupled systems. The coupled cases result to be classified into two
types: those with a quartic potential and those whose potential is functionally the superpo-
sition of a quartic and a Henon–Heiles potential.

Taking the same two types of potentials, but, now, considering the non-integrable cases,
we can conclude that, for the cases where the potentials have a quartic form, there is no need
to go through a chaos analysis, for this issue has already been discussed in the literature we
have previously referred to.

On the other hand, the study of chaos for the cases in which the potential is the su-
perposition of quartic and Henon–Heiles terms is more complex and deserves a separate
work. However, in this section, we shall give an example to illustrate how this type of non-
integrable potential admits order-chaos transition. Consider potential number 7 of Sect. 4.2:

Pot7 = k2
1

2M
x4 + 2k2

1

M
y4 + 4k2

1

M
x2y2 + 4k4k1

M
y3

+ 4k1k3 + 2k4k1

M
x2y + 2k2

3

M
x2 + 2k2

4

M
y2 (80)

and let us make use of the following techniques: Lyapunov characteristic exponent
(LCE) [36, 37], phase portraits and Poincaré sections [38]. The Lyapunov exponent is a
useful tool to quantify the divergence or convergence of initial nearby trajectories for a
dynamical system. In a chaotic system, there is at least one positive Lyapunov exponent,
defined as

σi = lim
t→∞ ln

di(t)

di(0)
, (81)

where di(t) is a deformation measure of the small hypersphere of initial conditions in the
phase space along the trajectory. The asymptotic rate of expansion of the largest axis is
given by the largest LCE. By phase portrait we mean a graph of the dynamical variables
in phase space that is used to provide a qualitative insight of the dynamical behavior of
the system under study. Similarly, the Poincaré section [38, 39] (a plot generated by the
points arising from the flux of the differential system intersecting a plane in phase space),
yields a qualitative information on the dynamical behavior of the system. The accuracy
of our computation was verified by checking if the Hamiltonian was conserved during the
simulation.

Fixing k1 = 10 and M = k3 = k4 = 1, the potential acquires the following form:

V = 50x4 + 200y4 + 400x2y2 + 40y3 + 60x2y + 2x2 + 2y2. (82)
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Fig. 1 Phase portrait for the first
case considered (see text)

Fig. 2 Lyapunov exponent for
the first case considered (see text)

We calculate the largest σi and its respective phase portraits and we present two cases
for the same set of parameters fixed above, but with different initial conditions. First, with
p1(0) = 0.1, p2(0) = 0.1, q1(0) = 0.1, q2(0) = 0.0, Energy = 0.035; it presents regular
behavior (see Figs. 1, 2 and 3). Here and in the figures, qi stand for the coordinates x and y,
and pi are the associated momenta.

The second case is given by: p1(0) = 0.1, p2(0) = 0.1, q1(0) = 0.1, q2(0) = 0.18,
Energy = 0.780631; it presents chaotic behavior (see Figs. 4, 5 and 6).

In the case in which the selected initial conditions correspond to the energy value 0.035,
the system exhibits regular behavior; this can be seen in the corresponding phase portrait and
Lyapunov exponent graphics. For the case in which the chosen initial conditions correspond
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Fig. 3 Poincaré section in the
plane p1 = 0 for an energy value
of 0.035

Fig. 4 Phase portrait for the
second case considered (see text)

to the energy value 0.780631, the system exhibits chaotic behavior, as it may be seen by the
corresponding figures.

However, a global view of the dynamics may be obtained by means of the corresponding
Poincaré sections. The Poincaré section for the energy value 0.035 (Fig. 3) shows, in its
most peripheral part, various separatrices and, in its interior, a chaotic region with basins
and various regularity islands. On the other hand, for the Poincaré section corresponding
to the energy value 0.780631 (Fig. 6), one sees a dense region of regularity in the center
and the most part of the volume characterized by a chaotic behavior, where three regularity
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Fig. 5 Lyapunov exponent for
the second case considered (see
text)

Fig. 6 Poincaré section in the
plane p1 = 0 for an energy value
of 0.780631

islands may be distinguished. Another apparent characteristic is the reduction in the number
of separatrices.

These examples show that this non-integrable system exhibits both ordered and chaotic
dynamics. This is not a new result in the case of Hamiltonian systems, where order and
chaos may coexist for a given value of the energy. However, this does not set up a rule.
The mechanical version of the pure Yang–Mills case mentioned in Sect. 2 exhibits only
chaos. Similarly, there are also other non-integrable models that do not exhibit chaos. Since,
besides the integrability analysis, the central question in this work is the identification of
chaos in supersymmetric theories, the simple demonstration of its existence constitutes the
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most important aspect, as compared to a detailed study of chaos in these models, which, as
already mentioned, deserves a separate work.

7 Conclusions

The full interplay between SUSY and integrability in mechanical systems is not yet known,
although some works in this direction do exist, among which we may cite Refs. [24–32]. By
“full” we mean what follows below.

Given a purely bosonic, non-supersymmetric potential whose possible relations between
its parameters may turn it integrable or not, the implementation of SUSY will certainly
restrict the parameter space to a subset of the original one. Whether or not this restriction will
be more severe on the integrable or on the non-integrable sector of the original parameter
space is an interesting question that, as far as we know, has not yet been answered (nor
addressed to) in the literature.

In the present work, we pursue an investigation on this theme, applying Painlevé’s in-
tegrability test to a specific example, chosen due to a field-theoretical motivation: the most
general forth-order supersymmetric potential with two bosonic variables, (19). Since the di-
rect application of the test to the original supersymmetric potential reveals itself unfeasible,
another symmetry, valid in many physical cases, was also required: parity. The analysis al-
lowed us to conclude that, if parity is required to be valid only for the bosonic sector, then
SUSY picks up just a very little number (see Table 3) of all the known integrable cases
(shown in Tables 1 and 2) of a general (non-supersymmetric) fourth-order potential. If par-
ity symmetry is implemented in a stronger version, such as to be also valid for the fermionic
sector, then the integrable cases picked up by SUSY are, of course, even more restrictive
(see Table 3).

Probably, the best way to estimate the effect of SUSY on integrability would be to com-
pare the action of SUSY in reducing both the subsets in parameter space: the integrable and
the non-integrable ones. Such a quantitative measure is difficult, but an intuitive candidate
is the dimension of the subspaces that compose such subsets. Thus, let us compare the re-
duction induced by SUSY on the dimension of each one of these two subsets. The starting
point is a generic fourth-order potential with x-parity symmetry, (4). The parameter space
has dimension 7, while the integrable (known) sector is made up of the separable cases (di-
mension 5) and the various subspaces shown in Tables 1 and 2; the largest dimension of the
corresponding non-separable cases is 3.

The effect of SUSY is the following: the parameter space is reduced to the five cases
mentioned in Sect. 4.1; they make SUSY and x-parity compatible with each other. The
largest dimension of the subsets that correspond to these five cases is 4 (the 2nd case). So,
the overall reduction implemented by SUSY in parameter space is from dimension 7 to 4
(not taking into account the other subspaces with dimensions less than 4 that constitute the
other four cases). Now, what is the action of SUSY separately on each of the integrable and
non-integrable sectors? As far as Painlevé test could afford, Table 3 shows that the largest
dimensionality of the subsets that constitute the integrable sector is 3. So, SUSY yields a
reduction from 5 to 3 in the separable integrable cases. As for the non-separable cases, we
can similarly notice a reduction from 3 to 2.

All these conclusions are summarized in Table 4. The lack of a precise criterium for
deciding if the reduction in the parameter space induced by SUSY implementation is biased
towards any of the two sectors (the integrable—separable or not—and the non-integrable)
does not allow a final conclusion. However, independently of considering an absolute or a
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Table 4 The action of SUSY on reducing the dimensionality of each sector of parameter space. The inte-
grable sector (especially the non-separable subset) is the less affected

x-parity symmetry valid

Without SUSY With SUSY

Parameter space (whole) Dim = 7 Dim = 4

(see (4)) (The “5 cases”)

Integrable, separable sector Dim = 5 Dim = 3

(see (4), C5 = C8 = 0) (see (29))

Integrable, nonseparable sector Dim = 3 Dim = 2

Tables 1(b), 2(b), 2(d) (Pot6, see (39))

Non-integrable sector R
7 − {dim = 5} R

4 − {dim = 3}

relative variation in the dimensions, and, above all, considering that only the example of
the present paper is being taken into account, SUSY seems to be less severe in the non-
separable integrable cases and much more severe in the non-integrable sector. Anyway, the
purpose of our work is just to point out some possibilities and to open the way towards
the study of the possible relationships between SUSY and integrability, which is necessary
for any definitive conclusion: to consider more examples, to study chaos implications (in
our example and others), besides, of course and if possible, to invoke general arguments
regarding the geometry and the topology of the sectors of parameter space, probably making
use of the SUSY algebra and the theory of integrable systems.

Now, as for the (simple) chaos analysis carried out here, the main conclusion is that,
regardless a probable tendency of SUSY to favor integrability (as seen above), a chaotic dy-
namics may indeed occur in a supersymmetric mechanical system with two bosonic degrees
of freedom. Of course, more work is necessary to get the details.

Another good issue to be studied is the possible relationships (if any) between SUSY and
chaos, that is, to study whether SUSY favors either chaos or regularity (or none).

Finally, we mention another issue that may be considered in subsequent works: the in-
tegrability analysis for the Grassmannian coordinates, ψi and ψ̄i (i = 1,2). Since we are
dealing with two bosonic degrees of freedom (x and y), that is not a simple matter (the solu-
tion for the case of just one bosonic degree of freedom is presented in Ref. [35]). The reader
may find interesting material about this (but restricted to the quantum case) in Refs. [40–42]
(or, alternatively to the two latter ones, Sect. 2 of Ref. [30]). The difficulty is due to the
quantity of Grassmannian coordinates (four), in contrast to the case of only two (as occurs
with one-dimensional Witten’s supersymmetric quantum mechanics [35] and with a planar
quantum particle in an electromagnetic field [43]), whose integrability of the fermionic de-
grees of freedom is well established. Anyhow, a simple, although not conclusive argument is
possible1: since, in a Hamiltonian system, the dynamics of a coordinate is given by its Pois-
son bracket with the Hamiltonian and, moreover, the SUSY charges have vanishing Poisson
bracket with the Hamiltonian, then, the dynamics of a fermionic degree of freedom is given
simply by the action of the SUSY charges on the Poisson bracket between its supersym-
metric bosonic partner and the Hamiltonian. Thus, due to the time derivative present in the
SUSY charges, the tendency of the fermionic degree of freedom is to show a less regular
behavior than its bosonic partner. Of course, a more detailed analysis is required in order to

1We thank Dr. A.L.M.A. Nogueira for pointing this out.
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draw more specific conclusions and find out possible exceptions to this reasoning (which do
occur in field theory, as, for example, some special topological configurations such as BPS
states).

Appendix Painlevé Test

The Painlevé test [38, 44] establishes if a system of ODEs exhibits the Painlevé property.
An ODE has the Painlevé property if its solutions in the complex plane are single-valued

in the neighborhood of all its movable singularities. Given a differential system

Lj(ui, uit ) = 0, with i, j = 1, . . . , n, (83)

we assume a Laurent expansion for the solution

ui(t) = (t − t0)
αi

∞∑
k=0

ui,k(t − t0)
k, (84)

with

ui,0 
= 0 and αi ∈ Z−, (85)

where ui,k are constants. The algorithm for the Painlevé test is implemented by means of the
following three steps:

Step 1 (Determine the leading singularity or dominant behavior).
We replace

ui(t) � ui,0(t − t0)
αi (86)

into (83) to determine αi and ui,0 and we obtain an algebraic system with αi , assuming
negative integer values and t0 arbitrary.

We require that two or more terms of each equation may balance and determine αi and
ui,0.

If any αi is not integer, the system is not of Painlevé type in its strong version.
If there are more than one solution for αi or ui,0 they define branches and the following

steps of the algorithm need to be applied for each of these branches.
Step 2 (Determine the resonances).
For each αi and ui,0, we calculate the integers r for which ui,r is an arbitrary function in

(83). We replace the truncated series

ui(t) = ui,0(t − t0)
αi + ui,r (t − t0)

αi+r (87)

in (83), and we look for integer r for which ui,r is an arbitrary constant.
To do that, after replacing the truncated series in (83), we keep the most singular terms

in (t − t0), and the coefficients of ui,r are set to zero. We get:

Qur = 0, ur = (u1,r u2,r · · ·uM,r )
T , (88)

with Q an M × M matrix depending on r .
The resonances are the roots of det(Q) = 0.
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In every system with the Painlevé property, the resonance (−1) will be present and corre-
sponds to arbitrary (t − t0). The resonance with zero value may also be present, depending
on the number of arbitrary values ui,0.

Step 3 (Compatibility conditions and constants of motion).
For every resonance found in the previous step, there is a compatibility condition which

must be verified in order that the system passes the Painlevé test. The compatibility condi-
tions are verified by inserting

ui(t) = (t − t0)
αi

rM∑
k=0

ui,k(t − t0)
k (89)

into (83), where rM is the highest positive integer resonance.
If all these compatibility conditions are satisfied so that they introduce a sufficient number

of arbitrary constants, then the system is said to be of Painlevé type.
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